Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Despite the importance of quantifying how the spatial patterns of heavy precipitation will change with warming, we lack tools to objectively analyze the storm-scale outputs of modern climate models. To address this gap, we develop an unsupervised, spatial machine-learning framework to quantify how storm dynamics affect changes in heavy precipitation. We find that changes in heavy precipitation (above the 80th percentile) are predominantly explained by changes in the frequency of these events, rather than by changes in how these storm regimes produce precipitation. Our study shows how unsupervised machine learning, paired with domain knowledge, may allow us to better understand the physics of the atmosphere and anticipate the changes associated with a warming world.more » « less
-
Abstract Global storm-resolving models (GSRMs) have gained widespread interest because of the unprecedented detail with which they resolve the global climate. However, it remains difficult to quantify objective differences in how GSRMs resolve complex atmospheric formations. This lack of comprehensive tools for comparing model similarities is a problem in many disparate fields that involve simulation tools for complex data. To address this challenge we develop methods to estimate distributional distances based on both nonlinear dimensionality reduction and vector quantization. Our approach automatically learns physically meaningful notions of similarity from low-dimensional latent data representations that the different models produce. This enables an intercomparison of nine GSRMs based on their high-dimensional simulation data (2D vertical velocity snapshots) and reveals that only six are similar in their representation of atmospheric dynamics. Furthermore, we uncover signatures of the convective response to global warming in a fully unsupervised way. Our study provides a path toward evaluating future high-resolution simulation data more objectively.more » « less
-
Abstract Cloud radiative feedback impacts early tropical cyclone (TC) intensification, but limitations in existing diagnostic frameworks make them unsuitable for studying asymmetric or transient radiative heating. We propose a linear Variational Encoder‐Decoder (VED) framework to learn the hidden relationship between radiative anomalies and the surface intensification of realistic simulated TCs. The uncertainty of the VED model identifies periods when radiation has more importance for intensification. A close examination of the radiative pattern extracted by the VED model from a 20‐member ensemble simulation on Typhoon Haiyan shows that longwave forcing from inner core deep convection and shallow clouds downshear contribute to intensification, with deep convection in the downshear‐left quadrant having the most impact overall on the intensification of that TC. Our work demonstrates that machine learning can aid the discovery of thermodynamic‐kinematic relationships without relying on axisymmetric or deterministic assumptions, paving the way for the objective discovery of processes leading to TC intensification in realistic conditions.more » « less
-
Projecting climate change is a generalization problem: We extrapolate the recent past using physical models across past, present, and future climates. Current climate models require representations of processes that occur at scales smaller than model grid size, which have been the main source of model projection uncertainty. Recent machine learning (ML) algorithms hold promise to improve such process representations but tend to extrapolate poorly to climate regimes that they were not trained on. To get the best of the physical and statistical worlds, we propose a framework, termed “climate-invariant” ML, incorporating knowledge of climate processes into ML algorithms, and show that it can maintain high offline accuracy across a wide range of climate conditions and configurations in three distinct atmospheric models. Our results suggest that explicitly incorporating physical knowledge into data-driven models of Earth system processes can improve their consistency, data efficiency, and generalizability across climate regimes.more » « less
-
Abstract This work integrates machine learning into an atmospheric parameterization to target uncertain mixing processes while maintaining interpretable, predictive, and well‐established physical equations. We adopt an eddy‐diffusivity mass‐flux (EDMF) parameterization for the unified modeling of various convective and turbulent regimes. To avoid drift and instability that plague offline‐trained machine learning parameterizations that are subsequently coupled with climate models, we frame learning as an inverse problem: Data‐driven models are embedded within the EDMF parameterization and trained online in a one‐dimensional vertical global climate model (GCM) column. Training is performed against output from large‐eddy simulations (LES) forced with GCM‐simulated large‐scale conditions in the Pacific. Rather than optimizing subgrid‐scale tendencies, our framework directly targets climate variables of interest, such as the vertical profiles of entropy and liquid water path. Specifically, we use ensemble Kalman inversion to simultaneously calibrate both the EDMF parameters and the parameters governing data‐driven lateral mixing rates. The calibrated parameterization outperforms existing EDMF schemes, particularly in tropical and subtropical locations of the present climate, and maintains high fidelity in simulating shallow cumulus and stratocumulus regimes under increased sea surface temperatures from AMIP4K experiments. The results showcase the advantage of physically constraining data‐driven models and directly targeting relevant variables through online learning to build robust and stable machine learning parameterizations.more » « less
-
null (Ed.)Abstract Neural networks are a promising technique for parameterizing subgrid-scale physics (e.g., moist atmospheric convection) in coarse-resolution climate models, but their lack of interpretability and reliability prevents widespread adoption. For instance, it is not fully understood why neural network parameterizations often cause dramatic instability when coupled to atmospheric fluid dynamics. This paper introduces tools for interpreting their behavior that are customized to the parameterization task. First, we assess the nonlinear sensitivity of a neural network to lower-tropospheric stability and the midtropospheric moisture, two widely studied controls of moist convection. Second, we couple the linearized response functions of these neural networks to simplified gravity wave dynamics, and analytically diagnose the corresponding phase speeds, growth rates, wavelengths, and spatial structures. To demonstrate their versatility, these techniques are tested on two sets of neural networks, one trained with a superparameterized version of the Community Atmosphere Model (SPCAM) and the second with a near-global cloud-resolving model (GCRM). Even though the SPCAM simulation has a warmer climate than the cloud-resolving model, both neural networks predict stronger heating/drying in moist and unstable environments, which is consistent with observations. Moreover, the spectral analysis can predict that instability occurs when GCMs are coupled to networks that support gravity waves that are unstable and have phase speeds larger than 5 m s −1 . In contrast, standing unstable modes do not cause catastrophic instability. Using these tools, differences between the SPCAM-trained versus GCRM-trained neural networks are analyzed, and strategies to incrementally improve both of their coupled online performance unveiled.more » « less
-
null (Ed.)While cloud-resolving models can explicitly simulate the details of small-scale storm formation and morphology, these details are often ignored by climate models for lack of computational resources. Here, we explore the potential of generative modeling to cheaply recreate small-scale storms by designing and implementing a Variational Autoencoder (VAE) that performs structural replication, dimension- ality reduction, and clustering of high-resolution vertical velocity fields. Trained on ∼ 6 · 106 samples spanning the globe, the VAE successfully reconstructs the spatial structure of convection, per- forms unsupervised clustering of convective organization regimes, and identifies anomalous storm activity, confirming the potential of generative modeling to power stochastic parameterizations of convection in climate models.more » « less
An official website of the United States government
